Simulation Based Inference for Dynamic Multinomial Choice Models

نویسندگان

  • John Geweke
  • Daniel Houser
  • Michael Keane
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probit and nested logit models based on fuzzy measure

Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...

متن کامل

A Numerical Analytical Model for Stochastic Dynamic User-Optimal Route Choice

Dynamic traffic assignment (DTA) models can be realized with vehicle-based simulation approach or flow-based analytical approach. Depending on methodology, the flow-based analytical models can be further classified into mathematical programming, optimal control and variational inequality models. A brief review of the development of analytical models is given in this paper. A stochastic dynamic ...

متن کامل

A New Estimation Approach to Integrate Latent Psychological Constructs in Choice Modeling

In the current paper, we propose a new multinomial probit-based model formulation for integrated choice and latent variable (ICLV) models, which, as we show in the paper, has several important advantages relative to the traditional logit kernel-based ICLV formulation. Combining this MNP-based ICLV model formulation with Bhat’s maximum approximate composite marginal likelihood (MACML) inference ...

متن کامل

Variational inference for large-scale models of discrete choice

Discrete choice models are commonly used by applied statisticians in numerous fields, such as marketing, economics, finance, and operations research. When agents in discrete choice models are assumed to have differing preferences, exact inference is often intractable. Markov chain Monte Carlo techniques make approximate inference possible, but the computational cost is prohibitive on the large ...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999